
Evaluation of ventilation efficiency in a local domain using

Net Escape Velocity and Net Escape Probability

Eunsu LIM (Toyo University)

Background

 Purpose of ventilation design: to replace the polluted air with fresh air

Contents

- Introduction and motivation
- Local Purging Flow Rate and Net Escape Velocity
- Net Escape Probability and Returning Probability
- Application to Ventilation Design

Ventilation Design

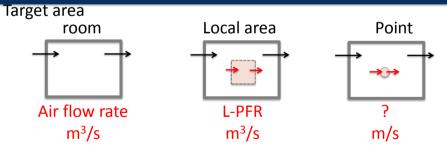
- Methods of Ventilation Design :
- ➤ Air exchange rate
- > Supplying fresh air
- > Removing contaminant

are related to the distribution of flow and diffusion fields

To evaluate the ventilation efficiency at a local domain is important.

Indices of ventilation efficiency

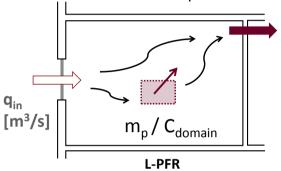
The several indices of ventilation efficiency for evaluating a local domain have been proposed.

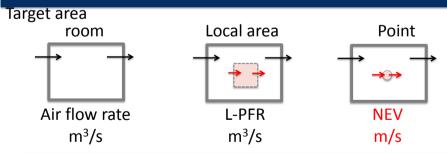

Research Level

- The age of air (Sandberg, 1981)
- The Scale for Ventilation Efficiency (SVE1~6) (Kato and Murakami, 1986)
- Local Purging Flow Rate (Sandberg and Sjöberg, 1983)

Practical Level

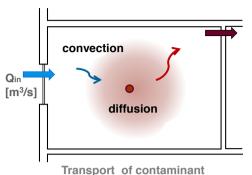
- The air change effectiveness ASHRAE-s in US
- The normalized concentration in an occupied zone SHASE-s in Japan


The minimum scale of Ventilation Efficiency


- The average concentration of the target area is determined by the amount of contaminant generated and the air flow rate
- When L-PFR is defined at a "point", the scale will be air velocity dimension [m/sec] → ??

Local-Purging Flow Rate (L-PFR)

- The flow rate to dilute/remove contaminant generated in a target local domain. [m³/s]
- The flow rate that defines the average concentration of the local domain. L-PFR is not equal to the flow rate q_{in}



The minimum scale of Ventilation Efficiency

- The average concentration of the target area is determined by the amount of contaminant generated and the air flow rate
- When L-PFR is defined at a "point", the scale will be air velocity dimension [m/sec] → Net Escape Velocity (1997, Sandberg)

The transport of contaminant

Contaminant transport is governed by convection and diffusion

Net Escape Velocity

the effective velocity of contaminant transport/dilution at a target point

Net Escape Velocity is defined by the concentration of contaminant, convective flux and diffusive flux at the target point

$$NEV_{x} = \frac{F_{outflow,x} - F_{inflow,x}}{\phi_{CV}}$$

 On premise of numerical calculation: the CV → the point

Assumption (CFD)

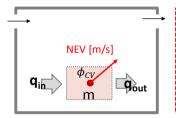
On the premise of discretization by the finite volume method.

Volume integration in CV

⇒ In CV assumed to be uniform

 \downarrow

CV can be thought of as a mass point


The amount of contaminant dilution for CV Instead of flow rate scale, Express on the representative velocity scale

Net Escape Velocity

NEV, [m/s]

phenomena

The velocity of contaminant at a CV is diluted/removed from the CV, never returning.

$$\begin{split} NEV_{x} &= \frac{1}{\phi_{CV}} \left\{ \left(u_{x} \phi \big|_{out} - D_{eff} \left. \frac{\partial \phi}{\partial x} \big|_{out} \right) - \left(u_{x} \phi \big|_{in} - D_{eff} \left. \frac{\partial \phi}{\partial x} \big|_{in} \right) \right\} \\ &= \frac{F_{outflow,x} - F_{inflow,x}}{\phi_{CV}} \end{split}$$

 $\phi_{\it CV}$: Contaminant concentration in target CV [kg/m³]

 $D_{\it eff}\,$: Effective diffusion coefficient [-], $D_{\it eff}\,=D\,+
u_t\,\,\,/\sigma_t$

 σ_t : Turbulent Schmidt number [-]

 $q_{\mathit{in}}, q_{\mathit{out}}~$: the amount of contaminant flowed in the CV [kg/s]

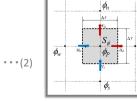
Definition of Net Escape Velocity

Vector quantity

$$NEV_{x} = \frac{1}{\phi_{CV}} \left\{ \left(u_{x} \phi \big|_{out} - D_{eff} \left. \frac{\partial \phi}{\partial x} \big|_{out} \right) - \left(u_{x} \phi \big|_{in} - D_{eff} \left. \frac{\partial \phi}{\partial x} \big|_{in} \right) \right\} \quad \dots (1)$$

Convection Diffusion flux flux

Outflow flux

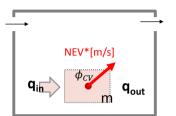

Inflow flux

→ Source

......

Magnitude

$$\overline{NEV} = \sqrt{\overline{NEV_x}^2 + \overline{NEV_y}^2 + \overline{NEV_z}^2}$$
 ···(2)



Control volume

Net Escape Velocity Star (NEV*)

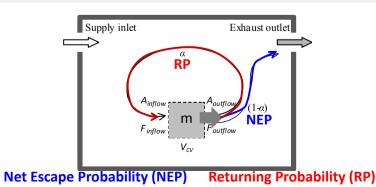
NEV*, [m/s]

The velocity of contaminant at a CV is transported from the CV.

$$NEV_{x}^{*} = \frac{1}{\phi_{CV}} \left(u_{x} \phi \Big|_{out} - D_{eff} \frac{\partial \phi}{\partial x} \Big|_{out} \right) = \frac{F_{outflow,x}}{\phi_{CV}}$$

 ϕ_{CV} : Contaminant concentration in target CV [kg/m³]

 $D_{\it eff}\,$: Effective diffusion coefficient [-], $D_{\it eff}\,=D+
u_t\,\,\,/\sigma_t$


 σ_t : Turbulent Schmidt number [-]

 $q_{\it in}, q_{\it out}\,$: the amount of contaminant flowed in the CV [kg/s]

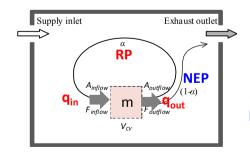
Transport component of indoor-generated contaminants

Transport component of contaminants generated at the target mass point (CV) will be divided to 2 components.

- Component to be removed directly through the exhaust outlet
- Component returning to generation point (CV) by circulating flow

Comparison of Fluid mechanics and Ventilation

• Properties

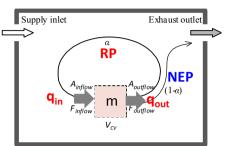

Fluid mechanics	Ventilation
Flow of all fluid particles	Flow of fluid particles never returning
Velocity of any fluid particle	(Flow of fluid particles never returning)/(control surface)

Corresponding terminology

Fluid mechanics	Ventilation
Flow rate	Purging Flow Rate
Velocity	Net Escape Velocity

Ventilation index NEP, RP

Returning Probability (RP)


Conceptual Diagram of NEP and RP

$$\alpha = \frac{q_{in}}{q_{out}} = \frac{q_{in}}{q_{in} + m}$$

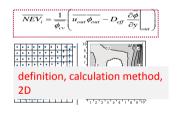
Net Escape Probability (NEP)

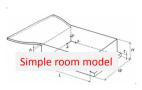
$$1-\alpha = \frac{q_{in}}{q_{out}} = \frac{m}{q_{in}+m}$$

Ventilation index NEP, RP

Conceptual Diagram of NEP and RP

Returning Probability (RP)

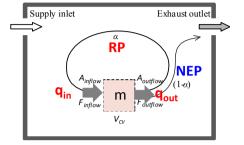

$$\alpha = \frac{q_{in}}{q_{out}} = \frac{q_{in}}{q_{in} + m}$$


$$= \frac{F_{inflow} A_{inflow}}{F_{inflow} A_{inflow} + q V_{CV}}$$

$$= \frac{F_{inflow} A_{inflow}}{F_{outflow} A_{outflow}}$$

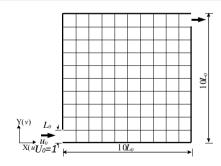
Our works

- Definition of Net Escape Velocity and analysis by RANS model, NEV and NEP
- Application of NEV to 3D flow field / contaminant diffusion field
- Application of NEV to air quality control problem for various local ventilators, NEV and NEP



Ventilation index NEP, RP

Net Escape Probability (NEP)



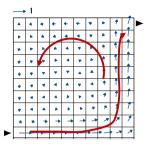
 $1-\alpha = \frac{q_{in}}{q_{out}} = \frac{m}{q_{in}+m}$

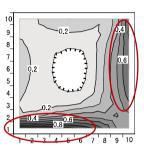
$$NEP = \frac{qV_{CV}}{F_{outflow}A_{outflow}}$$

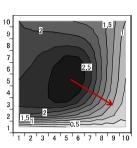
Conceptual Diagram of NEP and RP

NEV and NEP analysis (2D Simple Room)

Simple 2-dimensional model

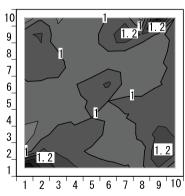

- $10L_0 \times 10L_0$ (L_0 : inlet size)
- Turbulence model: standard k- ε Turbulence intensity: 30%, $Re=U_0L_0/v \doteq 66,000$


Flow field


Diffusion field

NEV analysis

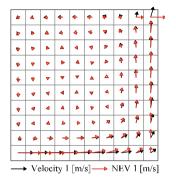
Results (flow field, diffusion field)

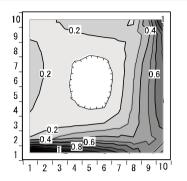


vector velocity

scalar velocity

concentration

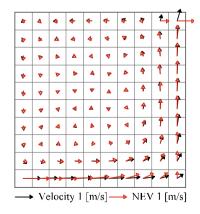

the NEV normalized by mean velocity **NEV / U**

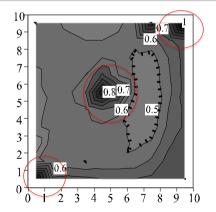


NEV / mean velocity at the CV

- Dimensionless NEV = 1, advective velocity U = NEV
- 1 The effect of the diffusion flux on the transport of contaminants
- Nondimensional NEV <1 direction:
 - Advective velocity ≠ NEV
- Nondimensional NEV> 1 direction: Advective velocity = NEV

Distribution of air velocity and NEV

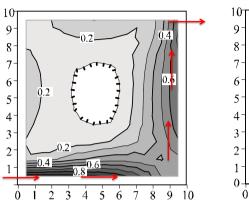



Vector distribution of NEV and U

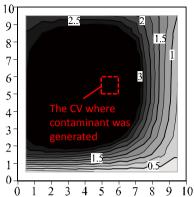
Scalar distribution of NEV

There is no significant difference between NEV and advective velocity U. The difference is diffusion effect for contaminant transport.

The distributions of advective velocity U, NEV and NEP

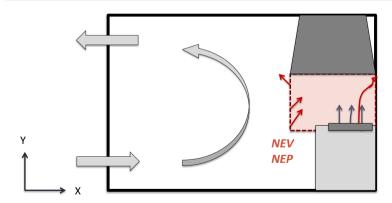


Advective velocity U and NEV

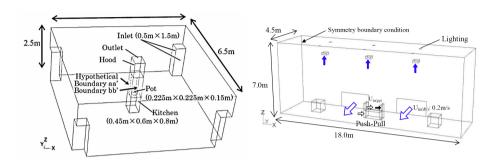

NEP

Advective velocity ≠ NEV

Distributions

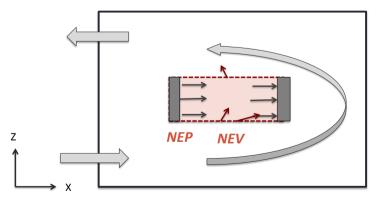


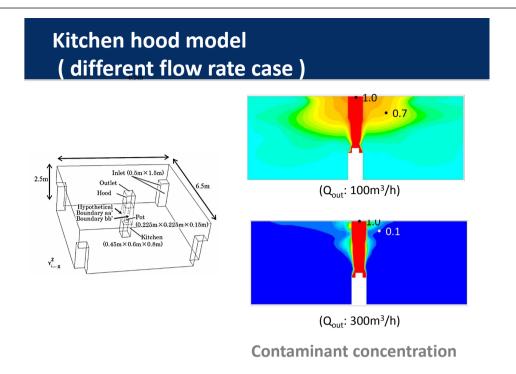
Scalar distribution of air velocity

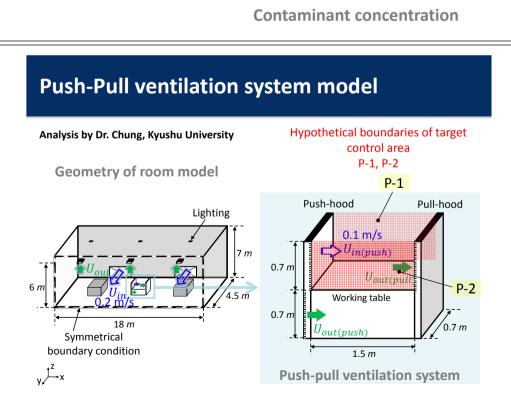

a example of Contaminant concentration field

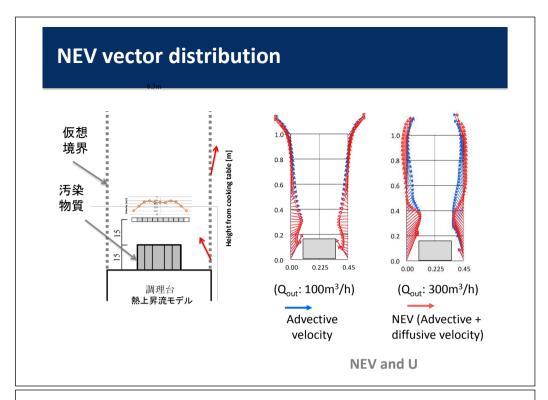
Evaluation at the hypothetical boundaries of control zone (Kitchen hood)

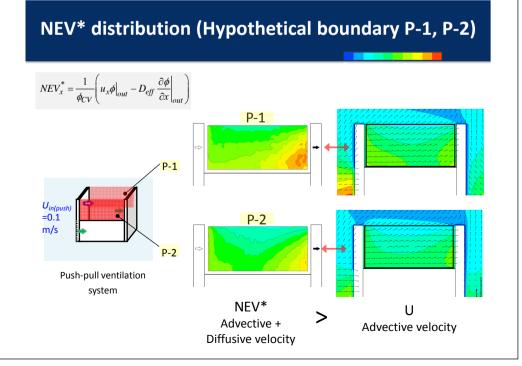
NEV* distribution on the hypothetical boundaries between the kitchen hood domain and the surrounding areas


Application of NEV to air quality control problem for various local ventilation system

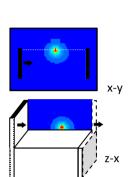

Kitchen hood

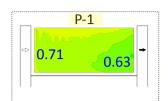

Push-Pull hood


Push-Pull ventilation system

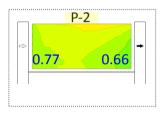


* Evaluation of ventilation efficiency by NEV and NEP on the hypothetical boundary





NEP distribution (Hypothetical boundary P-1, P-2)



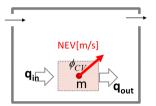
Increasing diffusive flux flowed in the control zone

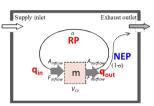
34~37% of contaminant is flowed to room, outside of Push-Pull control zone

NEP distribution

Conclusion

Net Escape Velocity (high value)


- The effective velocity of contaminant transport/dilution at a target point.
- · Advective velocity + Diffusive velocity
- One of the limitation types of ventilation index.


Net Escape Probability (high value)

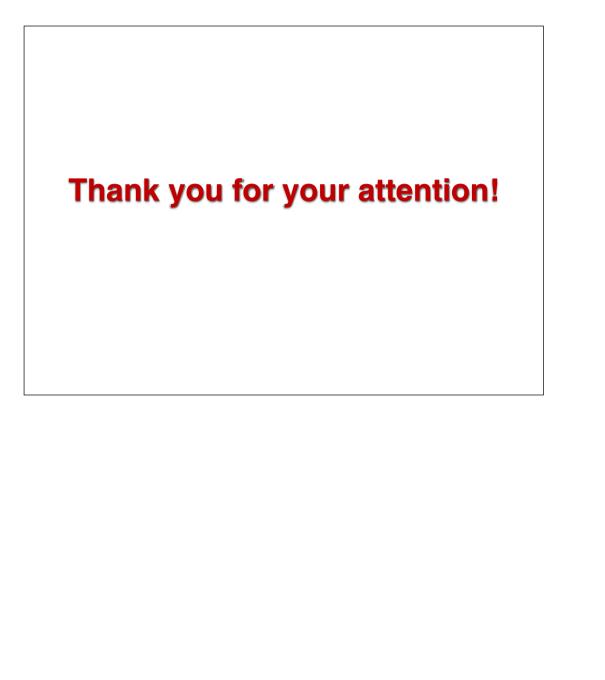
- the probability of direct exhaust of contaminant from the "point/local domain" towards the exhaust outlet
- The probability of Purging Flow Rate

Returning Probability (low value)

 The probability returning to generation point (CV) by circulating flow

Articles

Articles concerning NEV in our article as follows,


- Eunsu Lim, Kazuhide Ito and Mats Sandberg: New Ventilation Index for evaluating imperfect mixing condition- Analysis of Net Escape Velocity based on RANS Approach: *Building and Environment*, 61, pp45–56, 2013
- Eunsu Lim, Kazuhide Ito and Mats Sandberg: Performance evaluation of contaminant removal and air quality control for local ventilation systems using the ventilation index Net Escape Velocity: *Building and Environment*, 79, pp78–89, 2014

Articles concerning NEP

- Eunsu Lim, Kazuhide Ito: Net Escape Probability of Contaminant from a Local Domain to Exhaust Outlet: *J. Environ. Eng.* 82(733), 249-256, 2017 3
- Juyeon Chung, Eunsu Lim and Kazuhide Ito: Evaluation of Ventilation Efficiency in Local Ventilation System Based on Ventilation Indices NEV and NEP: J. Environ. Eng. Kyushu Branch. 2017.3

Conclusion

- We believe that the NEV and NEP will provide useful information to IAQ control.
- We will accumulate the analysis examples of ventilation design.

